一、“六先六后”,因人因卷制宜。
考生可依自己的解题习惯和基本功,选择执行“六先六后”的战术原则。1.先易后难。2.先熟后生。3.先同后异。先做同科同类型的题目。4.先小后大。先做信息量少、运算量小的题目,为解决大题赢得时间。5.先点后面。高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,步步为营,由点到面。6.先高后低。即在考试的后半段时间,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”。
二、一慢一快,相得益彰,规范书写,确保准确,力争对全。
审题要慢,解答要快。在以快为上的前提下,要稳扎稳打,步步准确。假如速度与准确不可兼得的话,就只好舍快求对了。
三、面对难题,以退求进,立足特殊,发散一般,讲究策略,争取得分。
对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊,化抽象为具体。对不能全面完成的题目有两种常用方法:1.缺步解答。将疑难的问题划分为一个个子问题或一系列的步骤,每进行一步就可得到一步的分数。2.跳步解答。若题目有两问,问做不上,可以问为“已知”,完成第二问。
四、执果索因,逆向思考,正难则反,回避结论的肯定与否定。
对一个问题正面思考受阻时,就逆推,直接证有困难就反证。对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。
本文出自于学科辅导致学教育www.z***,转载请注明出处